Exposure of Aspergillus fumigatus to caspofungin results in the release, and de novo biosynthesis, of gliotoxin.

نویسندگان

  • Ahmed Eshwika
  • Judy Kelly
  • John P Fallon
  • Kevin Kavanagh
چکیده

Caspofungin is a member of the echinocandin class of antifungal agents that inhibit the synthesis of β 1,3 glucan thus disrupting fungal cell wall structure and function. Exposure of the Aspergillus fumigatus cultures to caspofungin (0.01, 0.1 or 1.0 μg/ml) resulted in a reduction in cell growth, but the production of the epipolythiodioxopiperazine toxin, gliotoxin, was comparable, or greater, in cultures exposed to caspofungin than untreated controls. Exposure of A. fumigatus hyphae to 1.0 μg/ml caspofungin for 4 h resulted in the release of amino acids (P = 0.01), protein (P = 0.002) and gliotoxin (P = 0.02). Cultures of A. fumigatus incubated in the presence of caspofungin for 4 or 24 h demonstrated enhanced gliotoxin release (P = 0.04 and 0.03, respectively) and biosynthesis (P = 0.04 and 0.03, respectively) compared to that by control cultures. The results presented here indicate that exposure of A. fumigatus to caspofungin results in increased cell permeability and an increase in the synthesis and release of gliotoxin. Since gliotoxin has well established immunosuppressive properties it is possible that exposure of A. fumigatus to caspofungin may potentiate the production of this toxin at the site of infection. Elevated gliotoxin biosynthesis may be an attempt by the fungus to restore the redox balance of the cell following exposure to the antifungal agent but the overall effect appears to be enhanced synthesis and release.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gliotoxin effects on fungal growth: mechanisms and exploitation.

Although initially investigated for its antifungal properties, little is actually known about the effect of gliotoxin on Aspergillus fumigatus and other fungi. We have observed that exposure of A. fumigatus to exogenous gliotoxin (14 μg/ml), under gliotoxin-limited growth conditions, results in significant alteration of the expression of 27 proteins (up- and down-regulated >1.9-fold; p<0.05) in...

متن کامل

Amphotericin B enhances the synthesis and release of the immunosuppressive agent gliotoxin from the pulmonary pathogen Aspergillus fumigatus.

Exposure of the pulmonary pathogen Aspergillus fumigatus to amphotericin B alters membrane permeability as indicated by the escape of amino acids and protein from the mycelium. Amphotericin B exposure for periods of 2-4 h also leads to increased release of the immunosuppressive agent gliotoxin into the surrounding culture medium. Examination of the intracellular gliotoxin concentration followin...

متن کامل

GliA in Aspergillus fumigatus is required for its tolerance to gliotoxin and affects the amount of extracellular and intracellular gliotoxin.

Gliotoxin is an important virulence factor of Aspergillus fumigatus. Although GliA putatively belongs to the major facilitator superfamily in the gliotoxin biosynthesis cluster, its roles remain unclear. To determine the function of GliA, we disrupted gliA in A. fumigatus. gliA disruption increased the susceptibility of A. fumigatus to gliotoxin. The gliT and gliA double-disrupted mutant had ev...

متن کامل

In vitro activity of chlorogenic acid against Aspergillus fumigatus biofilm and gliotoxin production

Aspergillus (A.) fumigatus, one of the most common causes of life-threatening fungal infections in immunocompromised patients, shows resistance to antifungal agents as has a high propensity to forming a biofilm. The present study aimed to investigate the effects of chlorogenic acid (CRA) on A. fumigatus biofilm formation and integrity. Confocal laser scanning microscopy was performed to determi...

متن کامل

A Proteomic Approach to Investigating Gene Cluster Expression and Secondary Metabolite Functionality in Aspergillus fumigatus

A combined proteomics and metabolomics approach was utilised to advance the identification and characterisation of secondary metabolites in Aspergillus fumigatus. Here, implementation of a shotgun proteomic strategy led to the identification of non-redundant mycelial proteins (n = 414) from A. fumigatus including proteins typically under-represented in 2-D proteome maps: proteins with multiple ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical mycology

دوره 51 2  شماره 

صفحات  -

تاریخ انتشار 2013